The similarity degree of approximately divisible C*-algebras
نویسندگان
چکیده
منابع مشابه
A Note on Approximately Divisible C∗-algebras
Abstract: Let A be a separable, unital, approximately divisible C∗-algebra. We show that A is generated by two self-adjoint elements and the topological free entropy dimension of any finite generating set of A is less than or equal to 1. In addition, we show that the similarity degree of A is at most 5. Thus an approximately divisible C∗-algebra has an affirmative answer to Kadison’s similarity...
متن کاملthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولA Similarity Degree Characterization of Nuclear C * -algebras
We show that a C *-algebra A is nuclear iff there is a number α < 3 and a constant K such that, for any bounded homomorphism u : A → B(H), there is an isomorphism ξ : H → H satisfying ξ −1 ξ ≤ Ku α and such that ξ −1 u(.)ξ is a *-homomorphism. In other words, an infinite dimensional A is nuclear iff its length (in the sense of our previous work on the Kadison similarity problem) is equal to 2. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Operators and Matrices
سال: 2013
ISSN: 1846-3886
DOI: 10.7153/oam-07-25